
Qilin: A New Framework For
Supporting Fine-Grained Context-Sensitivity
in Java Pointer Analysis
Dongjie He #

The University of New South Wales, Sydney, Australia

Jingbo Lu #

The University of New South Wales, Sydney, Australia

Jingling Xue #

The University of New South Wales, Sydney, Australia

Abstract
Existing whole-program context-sensitive pointer analysis frameworks for Java, which were open-
sourced over one decade ago, were designed and implemented to support only method-level context-
sensitivity (where all the variables/objects in a method are qualified by a common context abstraction
representing a context under which the method is analyzed). We introduce Qilin as a generalized
(modern) alternative, which has been open-sourced on GitHub, to support the current research
trend on exploring fine-grained context-sensitivity (including variable-level context-sensitivity
where different variables/objects in a method can be analyzed under different context abstractions
at the variable level), precisely, efficiently, and modularly. To meet these four design goals,
Qilin is developed as an imperative framework (implemented in Java) consisting of a fine-grained
pointer analysis kernel with parameterized context-sensitivity that supports on-the-fly call graph
construction and exception analysis, solved iteratively based on a new carefully-crafted incremental
worklist-based constraint solver, on top of its handlers for complex Java features.

We have evaluated Qilin extensively using a set of 12 representative Java programs (popularly
used in the literature). For method-level context-sensitive analyses, we compare Qilin with Doop (a
declarative framework that defines the state-of-the-art), Qilin yields logically the same precision but
more efficiently (e.g., 2.4x faster for four typical baselines considered, on average). For fine-grained
context-sensitive analyses (which are not currently supported by open-source Java pointer analysis
frameworks such as Doop), we show that Qilin allows seven recent approaches to be instantiated
effectively in our parameterized framework, requiring additionally only an average of 50 LOC each.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Pointer Analysis, Fine-Grained Context Sensitivity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.30

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.6

Funding Supported by ARC Grants DP180104069 and DP210102409.

Acknowledgements We thank all the reviewers for their constructive comments.

1 Introduction

Pointer analysis, which approximates statically the possible run-time objects that may be
pointed to by a variable in a program, is the basis of nearly all the other static program
analyses. There are many significant applications, including call graph construction [23, 1, 38],
program understanding [46, 36], bug detection [34, 55, 27, 10], security analysis [4, 11, 13],
compiler optimization [9, 47], and symbolic execution [52, 21, 51].

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Dongjie He, Jingbo Lu, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 30; pp. 30:1–30:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.4230/DARTS.8.2.6
https://doi.org/10.4230/DARTS.8.2.6
https://doi.org/10.4230/DARTS.8.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

For object-oriented languages, context-sensitive pointer analyses are the most common
class of precise pointer analyses [48, 32, 23, 42, 44]. Existing (whole-program) pointer analysis
frameworks for Java, such as Doop [8], Wala [16], Jchord [34], and Paddle [24], were all
designed and implemented over a decade ago by supporting method-level context-sensitivity
only. For these traditional frameworks, when a method is analyzed under a given context
abstraction (e.g., a k-limited context string [41] with k being fixed for the program), all the
variables/objects in the method are analyzed uniformly under that given context abstraction.

For the past decade, Doop has been the most widely used context-sensitive pointer
analysis framework for Java [42, 22, 43, 48, 49, 26, 17, 18, 19]. Doop encodes a pointer
analysis declaratively by using Datalog (a logic-based language) to define pointer-related
relations (in terms of Datalog rules) and a Datalog engine to infer the points-to facts. Thus,
its performance is largely determined by the Datalog engine used and can be also sensitive
to both automatic and manual optimizations applied to the Datalog rules. For example,
a recent Datalog engine porting effort for replacing LogicBlox with Soufflé [20, 39] has
boosted its performance by up to 4x [3]. When it was released in 2009 [8], Doop was
shown to outperform Paddle [24] (the then state-of-the-art framework with the core of its
pointer analysis algorithm performed in Datalog declaratively but the rest coded in Java
imperatively) significantly. In addition, Doop was then argued to cost less human effort in
implementing different pointer analyses with different flavors of context-sensitivity as they
can all be specified modularly as variations on a common code base.

Currently, one emerging research trend is shaping the future of research on context-
sensitive pointer analyses. To analyze large programs more scalably with more flexible
efficiency/precision trade-offs, context-sensitivity is becoming increasingly more fine-grained.
Method-level context-sensitivity can now be selective [43, 19, 25] (with only a subset of
methods in the program being analyzed context-sensitively) or partial [30, 14] (with only
a subset of variables/objects in a method being analyzed context-sensitively). In the
future, pointer analysis frameworks are expected to support variable-level context-sensitivity,
which allows different variables/objects in a method to be analyzed under different context
abstractions, in order to enlarge the space of efficiency/precision trade-offs made. As for
the option of extending Doop to support such fine-grained context-sensitivity, we have
made significant efforts, but its resulting performance can often be disappointing due to
possibly poor join orders selected by its underlying Soufflé Datalog engine [39, 20] used.
Understandably, while the authors of [43, 19, 25] implemented trivially their selective method-
level context-sensitivity in Doop and observed the desired efficiency/precision trade-offs,
the authors of [30, 14] had to settle with some in-house implementations of their partial
method-level context-sensitivity in Soot [23] imperatively in order to achieve the expected
efficiency/precision trade-offs.

We introduce Qilin, a modern framework (implemented imperatively in Java) for sup-
porting Java pointer analyses with (1) fine-grained context-sensitivity, (2) precisely, (3)
efficiently, and (4) modularly. How to support (1) subject to (2) – (4) is nontrivial both
scientifically and engineering-wise and was not done before. For example, achieving (3) and
(4) requires Qilin to adopt new scientific approaches to specify and conduct pointer analysis
when different variables/objects in a method are analyzed under different context abstractions
imperatively. Achieving (2) requires Qilin to handle the full semantic complexity of Java,
involving huge engineering efforts. Given that Doop has been tuned for supporting method-
level context-sensitivity for over a decade, can Qilin outperform Doop while achieving the
same precision? In addition, can Qilin support a variety of fine-grained context-sensitivity
well? Qilin addresses these challenges, making the following contributions:

D. He, J. Lu, and J. Xue 30:3

Qilin represents the first imperative Java pointer analysis framework for supporting
fine-grained context-sensitivity, precisely, efficiently and modularly.
Qilin achieves its efficiency and modularity by decoupling the analysis logic for a given
analysis algorithm from its implementation in the following novel way:

Qilin includes a pointer analysis kernel (supporting both on-the-fly call graph con-
struction and on-the-fly exception analysis) with parameterized fine-grained context-
sensitivity, allowing different flavors (i.e., granularities) of fine-grained context-sensitivity
to be specified (i.e., instantiated) modularly as variations on a common code base
(even in the fully imperative setting).
Qilin includes a new incremental worklist-based constraint solver that has been
generalized in a non-trivial manner from a traditional incremental worklist-based
constraint solver for supporting context-insensitive pointer analyses [23]. As existing
solvers are limited to method-level context-sensitivity, we have crafted our solver
carefully in order to support fine-grained context-sensitive pointer analyses efficiently.

Qilin covers the same complex Java features and semantic complexities (e.g., reflection,
native code, threads, etc.) as Doop, delivering the same analysis precision.
Qilin anchors around it a tool suite consisting of not only all method-level context-
sensitive analyses supported by Doop but also a wide range of fine-grained analyses.
Qilin is evaluated with a set of 12 representative Java benchmarks and applications
(popularly used in the literature). For method-level context-sensitive analyses, Qilin
(which is currently single-threaded) is 2.4x faster than Doop (running with 8 threads
under its best thread configuration) for four typical baselines considered on average while
achieving exactly the same precision. Unlike Doop, Qilin supports effectively fine-grained
context-sensitive analyses, by enabling seven recent approaches to be instantiated in its
parameterized framework with an average of 50 LOC being added only.

Qilin is designed to be an open-source project (released at https://github.com/QiLinPTA/
QiLin/), consisting of currently about 20.3 KLOC in Java (including 4.7 KLOC only at its
core for performing parameterized pointer analysis). As a highly-configurable pointer analysis
framework, Qilin provides benefits for both researchers and end users. For researchers, Qilin
can help them both experiment with new ideas more quickly than if they have to conduct
their own in-house implementations of their pointer analysis algorithms as in [14, 28, 15] and
evaluate their ideas by making an apples-to-apples comparison against the state of the art in
the same framework. For end users, Qilin can help them build their client application tools,
such as bug detectors and program verifiers, by choosing some existing configured pointer
analyses that are best suited to their needs. We plan to grow and maintain this open-source
pointer analysis framework on GitHub to provide a common framework for researchers and
practitioners to design, implement and evaluate different analyses for Java programs.

The rest of this paper is organized as follows. Section 2 provides some background
knowledge and motivates this work. Section 3 introduces our Qilin framework. In Section 4,
we demonstrate how to create, i.e., instantiate a number of fine-grained context-sensitive
pointer analyses modularly in Qilin. Section 5 provides an extensive evaluation of Qilin.
Section 6 discusses the related work. Finally, Section 7 concludes the paper.

2 Background and Motivation

We discuss context-sensitive pointer analyses by first reviewing method-level context-
sensitivity and then motivating its generalization to variable-level context-sensitivity.

ECOOP 2022

https://github.com/QiLinPTA/QiLin/
https://github.com/QiLinPTA/QiLin/

30:4 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

2.1 Method-Level Context-Sensitivity

Traditionally, context-sensitive approaches analyze a method separately under different
calling contexts that abstract its different run-time invocations. Under such method-level
context-sensitivity, whenever a method is analyzed for a given context, all its (local) variables
and (allocated) objects are qualified by, i.e., analyzed under that context. For object-
oriented languages, two common context abstractions are callsites (callsite-sensitivity [40])
and receiver objects, or precisely, their allocation sites (object-sensitivity [32, 33]). The two
other variations are type-sensitivity [42] and hybrid sensitivity [22].

To tame the combinatorial explosion of contexts encountered in practice, a context is often
represented by a k-limited context string, i.e., a sequence of k context elements [41]. Under
k-limiting, two representative forms of context-sensitivity for object-oriented languages are:
(1) k-callsite-sensitivity [40], which distinguishes the contexts of a method by its k-most-recent
callsites, and (2) k-object-sensitivity [32, 33]), which distinguishes the contexts of a method
by its receiver’s k-most-recent allocation sites.

Despite k-limiting, the context explosion problem still occurs frequently in analyzing
large programs [42, 48, 19], causing context-sensitive pointer analyses to be inefficient even
when they are scalable (for usually only small values of k). Instead of applying k-limiting
uniformly (with a fixed value of k) to all the methods (i.e., all the variables/objects) in
the program, researchers have recently demonstrated that making context-sensitivity more
fine-grained can lead to more flexible efficiency/precision trade-offs and better scalability.
As a result, method-level context-sensitivity can now be selective [43, 19, 25] (with a subset
of methods in the program being analyzed context-sensitively) and partial [30, 14] (with a
subset of variables/objects in a method being analyzed context-sensitively).

2.2 Variable-Level Context-Sensitivity

In the future, variable-level context-sensitivity (that includes naturally method-level context-
sensitivity as a special case) can be investigated by using Qilin. Under such fine-grained
context-sensitivity in its full generality, different variables/objects in a method can be analyzed
under different contexts (e.g., different k-limited context strings with different values of k).
This will significantly enlarge the space of context-sensitive pointer analyses that researchers
and practitioners can experiment with in order to achieve the most flexible efficiency/precision
trade-offs and best scalability possible for their pointer analysis problems considered.

1 class A { Object f; }
2 class B {
3 Object foo(Object x, A a) {
4 a.f = x;
5 Object t = a.f;
6 System.out.print(t);
7 return x; }
8 }

9 void main() {
10 Object o1 = new Object(); // O1
11 B b1 = new B(); // B1
12 A a1 = new A(); // A1
13 Object v1 = b1.foo(o1, a1);
14 Object o2 = new Object(); // O2
15 B b2 = new B(); // B2
16 Object v2 = b2.foo(o2, a1);}

Figure 1 A motivating example program.

D. He, J. Lu, and J. Xue 30:5

2.3 Example
Consider a simple program given in Figure 1, where foo() is called twice, once on receiver B1
in line 13 and once on receiver B2 in line 16. If the program is analyzed context-insensitively,
these two calls will be conflated, and consequently, the parameter x will also be conflated,
preventing the analysis from proving that the two calls actually return two distinct objects (i.e.,
O1 and O2). As a result, v1 and v2 are concluded to point to both O1 and O2 conservatively.

However, a context-sensitive analysis that distinguishes the two calls will be able to infer
that v1 points to O1 only and v2 points to O2 only. Without loss of generality, let us consider
1-object-sensitivity [32, 33], under which these two calls will be distinguished by its two
different receiver objects, B1 and B2, used. Thus, under method-level context-sensitivity,
foo() is analyzed twice, with its four variables this, x, a and t being analyzed once under
context [B1] and once under context [B2]. As the contexts of its parameter x are distinguished
under the two calls, v1 is found to point to O1, i.e., the object pointed to by x under [B1],
and similarly, v2 is found to point to O2, i.e., the object pointed to by x under [B2].

However, applying method-level context-sensitivity to foo() in this program is overkill.
Under fine-grained context-sensitivity, we can conduct 1-object-sensitive analysis to foo()
exactly as before except that we only need to distinguish its parameter x context-sensitively.
Note that all the variables/objects in main() are naturally context-insensitive. By analyzing
only x in this program context-sensitively, the resulting fine-grained analysis will be faster
while losing no precision at all for all its variables/objects.

3 Designing the Qilin Framework

Figure 2 gives the architecture of Qilin, built on top of Soot [53], for supporting fine-
grained context-sensitive pointer analysis for Java programs. Currently, Qilin’s toolbox (1)
includes not only all the method-level context-sensitive pointer analyses that are supported
by Doop [8] but also a range of recently proposed representative fine-grained analyses, as
will be elaborated in Section 4. In this section, we describe how Qilin is designed to support
fine-grained context-sensitivity, precisely, efficiently and modularly in terms of its four major
components depicted at 2 – 5 . In Section 3.1, we explain how we parameterize variable-level
context-sensitivity to allow different flavors of context-sensitive analyses to be specified
modularly (2). We then formalize our parameterized pointer analysis in Section 3.2 (3)
and introduce our new incremental worklist-based constraint solver for solving it efficiently
in Section 3.3 (4). In Section 3.4, we describe how Qilin covers complex Java features in
order to support pointer analyses precisely for real-world Java programs (5).

It should be pointed out that in Qilin, all the pointer analyses (including what is provided
in its toolbox (1)) are instantiated (concretized) in terms of 2 as variations on a common
code base consisting of 3 – 5 , even though Qilin is implemented imperatively in Java.

3.1 Parameterized Context-Sensitivity
In Qilin, as depicted at 2 in Figure 2, context-sensitivity for a given analysis is defined by
a set of three parameters, a context constructor, a context selector, and a heap abstractor,
each of which can be instantiated to support different flavors (i.e., granularities) of context-
sensitivity from the method level to the variable level.

The context constructor, denoted Cons, is used to create the contexts required for analyzing
a method in the traditional manner. Therefore, this parameter alone will be sufficient to
specify different flavors of method-level context sensitivity considered traditionally, including

ECOOP 2022

30:6 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Context SelectorContext Constructor

Soot: A Java Optimization and Analysis Framework

Parameterized
Fine-Grained

Context-Sensitivity

On-the-Fly
Exception Analysis

On-the-Fly Call
Graph Construction

Parameterized Pointer Analysis Kernel

Insens Callsite Object

TypeHybrid Selective Partial

Concretized Pointer Analyses (toolbox)

kCFA kOBJ Mahjong

TurnerEagle Data-Driven ...

insens

Zipper

kTYPE Hybrid

... ...

Heap Abstractor

Allocation-Site

Type-Consistent ...

Context-Tunneling

Bean

Incremental Worklist-based Solver for Fine-Grained Context-Sensitivity

Handlers for Complex Java Features

Uniform Heuristic Heuristic

1

2

3

4

5

Conch

Figure 2 The architecture of Qilin.

“Insens”, “CallSite”, “Object”, “Type”, and “Hybrid”, which will be instantiated in Section 4.1.
The context selector, denoted Sel, is used to define the contexts required for analyzing
variables/objects (based on the contexts of their containing methods specified by Cons) to
support fine-grained context-sensitivity, including “Uniform”, “Heuristic”, “Selective”, and
“Partial”, which will be instantiated in Section 4.2. The heap abstractor, denoted HeapAbs,
is used to define an abstraction of the objects in the heap, including “Allocation Site”,
“Heuristic”, and “Type-Consistent”, which will be instantiated in Section 4.3.

As context-sensitivity is parameterized (2), an understanding about its actual instanti-
ations is not needed now in order to understand its other three components (3 – 5), which
will be described in turn below.

3.2 Parameterized Pointer Analysis
We describe our parameterized pointer analysis (3 in Figure 2) that supports on-the-fly
call graph construction [23] and exception analysis [7] by considering a simplified subset
of Java, with only eight kinds of labeled statements given in Table 1. Note that “x =
new T (...)” in standard Java is modeled as “x = new T ; x.<init>(...)”, where <init>(...)

D. He, J. Lu, and J. Xue 30:7

is the corresponding constructor invoked. The control flow statements are not considered
because Qilin supports only context-sensitive analyses just as Doop [8]. In our formalism
(for simplicity and without loss of generality), every method is assumed to have one return
statement “return ret”, where ret is its return variable, and one special catch statement
“catch eret” for catching all throwable objects thrown out of the method.

Table 1 Eight kinds of statements analyzed by Qilin.

Kind Statement Kind Statement
new l ∶ x = new T assign l ∶ x = y

store l ∶ x.f = y load l ∶ x = y.f

throw l ∶ throw x catch l ∶ catch y

call l ∶ x = a0.f(a1, ..., ar) return l ∶ return ret

Let V, H, T, M, F, and L be the domains for representing sets of variables, heap abstrac-
tions, types, methods, field names, and statements (identified by their labels), respectively.
Let C be the universe of contexts. The following auxiliary functions are used:

PTS ∶ (V ∪H × F) × C → ℘(H × C)
MethodOf ∶ L → M
Stmt ∶ M → ℘(L)
MethodCtx ∶ M → ℘(C)
VirtualCallDispatch ∶ M ×H → M
ExceptionDispatch ∶ L ×H → L
Cons ∶ H × C × L × C → C
Sel ∶ (V ∪H) × C ↦ C
HeapAbs ∶ L × T ↦ H

where PTS records the points-to information found context-sensitively for a variable or an
object’s field, MethodOf gives the method containing a statement, Stmt returns the statements
in a method, and MethodCtx maintains the contexts used for analyzing a method. As the
pointer analysis is conducted together with both the call graph construction and exception
analysis performed on the fly, we use VirtualCallDispatch to resolve a virtual call to a
target method based on the dynamic type of the receiver object, and ExceptionDispatch to
resolve a throwable statement to a catch statement by tracing the exception-catch links [7].
Cons, Sel and HeapAbs are three significant parameters described in Section 3.1. Cons
describes how to construct a new context for a method, Sel selects some context elements
from the context of a method to form a new context for a variable declared (or object
allocated) in the method, and HeapAbs defines the heap abstraction for an object. We will
discuss their instantiations for supporting different analysis algorithms in Section 4.

Figure 3 gives six rules used for formalizing our parameterized pointer analysis that
supports both call graph construction and exception analysis on the fly. In [New], o ∈ H is an
abstract heap object created by HeapAbs. Rules [Assign], [Load] and [Store] for handling
assignments, loads and stores, respectively, are standard. In [Throw], a throwable object o

pointed by variable x is dispatched to its corresponding catch trap along the exception-catch
links [7]. In [Call], a call to an instance method x = a0.f(a1, ..., ar) is analyzed. Here, this

m
′

,
p

m
′

i , and ret
m

′

are the “this” variable, i-th parameter, and return variable of m
′, respectively,

where m
′ is a target method resolved. In the conclusion of this rule, ctx

′
∈ MethodCtx(m′)

reveals how the contexts of a method are maintained. Initially, the contexts of all the entry
methods are set to be empty, e.g., MethodCtx(“main”) = {[]}. To simulate Java’s run-time

ECOOP 2022

30:8 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

l ∶ x = new T o = HeapAbs(l, T) m = MethodOf(l) ctx ∈ MethodCtx(m)
(o, Sel(o, ctx)) ∈ PTS(x, Sel(x, ctx))

[New]

l ∶ x = y m = MethodOf(l) ctx ∈ MethodCtx(m)
PTS(y, Sel(y, ctx)) ⊆ PTS(x, Sel(x, ctx))

[Assign]

l ∶ x = y.f m = MethodOf(l) ctx ∈ MethodCtx(m) (o, htx) ∈ PTS(y, Sel(y, ctx))
PTS(o.f, htx) ⊆ PTS(x, Sel(x, ctx))

[Load]

l ∶ x.f = y m = MethodOf(l) ctx ∈ MethodCtx(m) (o, htx) ∈ PTS(x, Sel(x, ctx))
PTS(y, Sel(y, ctx)) ⊆ PTS(o.f, htx)

[Store]

l ∶ throw x m = MethodOf(l) ctx ∈ MethodCtx(m)
(o, htx) ∈ PTS(x, Sel(x, ctx)) l

′ ∶ catch y = ExceptionDispatch(l, o)
(o, htx) ∈ PTS(y, Sel(y, ctx))

[Throw]

l ∶ x = a0.f(a1, ..., ar) m = MethodOf(l) ctx ∈ MethodCtx(m) l
′ ∶ throw tl ∈ Stmt(m)

(o, htx) ∈ PTS(a0, Sel(a0, ctx)) m
′
= VirtualCallDispatch(f, o) ctx

′
= Cons(o, htx, l, ctx)

ctx
′
∈ MethodCtx(m′) (o, htx) ∈ PTS(this

m
′

, Sel(this
m

′

, ctx
′))

∀i ∈ [1, r] ∶ PTS(ai, Sel(ai, ctx)) ⊆ PTS(pm
′

i , Sel(pm
′

i , ctx
′))

PTS(eret
m

′

, Sel(eret
m

′

, ctx
′)) ⊆ PTS(tl, Sel(tl, ctx)) PTS(ret

m
′

, Sel(ret
m

′

, ctx
′)) ⊆ PTS(x, Sel(x, ctx))

[Call]

Figure 3 Rules for defining Qilin’s parameterized pointer analysis.

semantic for re-throwing the exception objects (not handled in m
′) caused by its special

catch statement “catch eret
′”, we associate a unique throw statement, l

′ ∶ throw tl, with
the callsite l, where tl is a special local variable in m for receiving these exception objects.

3.3 A High-Performance Incremental Worklist-based Solver
Doop [8] is declarative and uses a Datalog engine, e.g., Soufflé [20, 39] to compute the
points-to facts for a pointer analysis. As Qilin is imperative, we have developed a new high-
performance worklist-based constraint solver (depicted at 4 in Figure 2), which is currently
single-threaded, for performing fine-grained context-sensitive pointer analyses (including
variable-level context-sensitive pointer analyses in its full generality). When designing
and implementing this constraint solver, we leverage an incremental worklist algorithm
[23] suggested originally for resolving Andersen’s context-insensitive pointer analysis [2].
However, we would like to stress that the basic algorithm used in our incremental worklist-
based constraint solver is new, since variable-level context-sensitive pointer analyses require
some points-to facts to be propagated in a way that does not exist traditionally before, as
highlighted in Theorem 1. We will prove its correctness in Theorem 2 and illustrate its key
part in supporting fine-grained context-sensitivity by using two examples (Tables 2 and 3).

Given a program P , we write EntryOf(P) to represent the set of its entry methods
(including main()). To compute the points-to set PTS(p, c) iteratively, where p ∈ V ∪H × F
and c ∈ C, according to the rules given in Figure 3, we use four additional sets to represent four
other kinds of context-sensitive facts that are also computed iteratively: (1) PAG (containing
the currently discovered constraints expressed in terms of the assign, load and store edges in
a PAG (Pointer Assignment Graph [23]), (2) CALL (containing the currently discovered call
statements), (3) THROW (containing the currently discovered throw statements), and (4) RM
(containing the (transitively) reachable methods found from EntryOf(P) so far).

D. He, J. Lu, and J. Xue 30:9

For each of these five sets, denoted IS, we represent it as an incremental set [23] by
dividing it into an “old” part (ISold) and a “new” part (ISnew), so that IS = ISold ∪ ISnew,
denoted also ⟨ISold, ISnew⟩. At some point during the current iteration of an incremental
worklist algorithm, FlushNew(IS) is called to flush ISnew into ISold, meaning that ISold ←

ISold ∪ ISnew and ISnew ← ∅ are performed sequentially in that order. For notational
convenience, we will write S

∪
←− T as a shorthand for S ← S ∪ T , where S and T are sets.

When computing the points-to facts iteratively for a pointer analysis, generalizing from
method-level to variable-level context-sensitivity introduces one additional subtlety as sum-
marized below, affecting the design of an incremental worklist-based constraint solver.

▶ Theorem 1. Let method m (containing variable v) be analyzed under a new context
c. Then PTS(v, Sel(v, c))old = ∅ always holds under method-level context-sensitivity but
PTS(v, Sel(v, c))old ≠ ∅ may hold under variable-level context-sensitivity.

Proof. Let c
′ be a context under which m was analyzed earlier. Under method-level

context-sensitivity, Sel(v, c) = c and Sel(v, c
′) = c

′. As c ≠ c
′, Sel(v, c) ≠ Sel(v, c

′).
Hence, PTS(v, Sel(v, c))old = ∅ (as ⟨v, Sel(v, c)⟩ is new and has never been analyzed
before). Under variable-level context-sensitivity, Sel(v, c) = Sel(v, c

′) may hold. Thus,
PTS(v, Sel(v, c))old ≠ ∅ can hold if ⟨v, Sel(v, c)⟩ has been already analyzed earlier. ◀

Our incremental worklist-based constraint solver, given in Algorithm 1, takes a program
P as input and applies the rules in Figure 3 to compute PTS as output, by performing both
call graph construction and exception analysis on the fly. During the initialization (lines 1-5),
RM is initialized with the entry methods in EntryOf(P). ProcessStmts (lines 46-62) is called
to initialize PTS, PAG, THROW and CALL with the points-to facts, three kinds of PAG edges,
throw statements, and call statements found in these entry methods, respectively. Note that
in line 61, l

′ ∶ throw tl is used for handling the exception objects thrown at callsite l, as
discussed in Section 3.2. At this stage, the worklist W contains all the variables initialized to
point to all the newly created objects (lines 48-50 ([New]) and lines 22-25).

The main loop (lines 6-20) discovers the points-to facts in the program iteratively. During
each iteration, W contains a set of context-sensitive pointers p (variables or object fields)
whose newly found points-to facts in PTS(p)new need to be propagated to their successors in
PAG (i.e., PAGold ∪ PAGnew). Due to Theorem 1, however, for some context-sensitive pointer
q that no longer appears in W, such that o ∈ PTS(q)old and f is a field of o, we may also
need to propagate the points-to facts in PTS(q)old and/or PTS(o.f)old to their newly found
successors in PAGnew or from some newly found predecessors of o.f in PAGnew to PTS(o.f)new.

During each iteration of the main loop (lines 6-20), we remove one such pointer curr from
W and perform a four-step points-to fact propagation in the current iteration as follows:

Step 1: Resolving Direct Constraints (lines 8-11). We resolve direct constraints
by applying two rules in Figure 3: [Assign] (lines 8-9) and [Throw] (lines 10-11).
In handling an outgoing assign edge at curr , we propagate the new points-to facts in
PTS(curr)new to the successor of curr along this outgoing assign edge (lines 22-25). In
handling a throw for curr , a thrown object is passed to the variable in its exception
handler (lines 26-29).
Step 2: Resolving Indirect Constraints (lines 12-15). We resolve indirect con-
straints by applying also two rules in Figure 3: [Load] (lines 12-13) and [Store] (lines 14-
15). In handling load and store edges (lines 30-37), new assign edges are introduced in
PAG (lines 33 and 37) to make their underlying assignment semantics explicit.
Step 3: Collecting New Constraints (lines 16-19). We discover new reachable
methods by first calling HandleCall to analyze the calls with curr as their receiver
variable ([Call]) and then adding the new constraints for these new methods by calling

ECOOP 2022

30:10 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Algorithm 1 Qilin’s incremental worklist-based constraint solver (implemented using
incremental sets [23]) for supporting pointer analyses with fine-grained context-sensitivity.

1

Input: P // Input program

Output: PTS // Points-to Sets

2 ∀(v, c) ∈ V × C ∶ PTS(v, Sel(v, c)) ← ⟨∅,∅⟩

3 THROW ← CALL ← PAG ← ⟨∅,∅⟩

4 W ← ∅

5 RM ← ⟨∅, {⟨me, []⟩ ∣ me ∈ EntryOf(P)}⟩

6 ProcessStmts ()

7 while W ≠ ∅ do

8 curr ← Poll(W) // curr ∈ (V ∪H × F) × C

/* Step 1: Resolving Direct Constraints */

9 for curr
assign
−−−−→ ⟨x, c⟩ ∈ PAG do

10 PropPTS(⟨x, c⟩, PTS(curr)new)

11 for ⟨l ∶ throw y, c⟩ ∈ THROW, s.t., curr = ⟨y, Sel(y, c)⟩ do

12 HandleThrow(l, curr, “new”)

/* Step 2: Resolving Indirect Constraints */

13 for curr
load[f]
−−−−→ ⟨x, c⟩ ∈ PAG do

14 HandleLoad(curr
load[f]
−−−−→ ⟨x, c⟩, “new”)

15 for ⟨x, c⟩ store[f]
−−−−→ curr ∈ PAG do

16 HandleStore(⟨x, c⟩ store[f]
−−−−→ curr, “new”)

/* Step 3: Collecting New Constraints */

17 for ⟨l ∶ x = a0.f(⋯), c⟩ ∈ CALL, s.t., curr = ⟨a0, Sel(a0, c)⟩ do

18 HandleCall(l ∶ x = a0.f(⋯), c, “new”)

19 ProcessStmts()

20 FlushNew(PTS(curr))

/* Step 4: Activating New Constraints */

21 ActivateConstraints()

22 return PTS

23 Function PropPTS(⟨x, c⟩, s):

24 if ∃ ⟨o, htx⟩ ∈ s \ PTS(x, c) then

25 PTS(x, c)new
∪
←− s \ PTS(x, c)

26 W
∪
←− {⟨x, c⟩}

27 Function HandleThrow(l, ⟨y, c⟩, i):

28 for ⟨o, htx⟩ ∈ PTS(y, c)i do

29 l
′ ∶ catch x ← ExceptionDispatch(l, o)

30 PropPTS(⟨x, Sel(x, c)⟩, {⟨o, htx⟩})

31 Function HandleLoad(⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩, i):

32 for ⟨o, htx⟩ ∈ PTS(y, c)i do

33 if ⟨o.f, htx⟩ assign
−−−−→ ⟨x, c

′⟩ ∉ PAG then

34 PAGnew
∪
←− {⟨o.f, htx⟩ assign

−−−−→ ⟨x, c
′⟩}

35 Function HandleStore(⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩, i):

36 for ⟨o, htx⟩ ∈ PTS(x, c
′)i do

37 if ⟨y, c⟩ assign
−−−−→ ⟨o.f, htx⟩ ∉ PAG then

38 PAGnew
∪
←− {⟨y, c⟩ assign

−−−−→ ⟨o.f, htx⟩}

39 Function HandleCall(l ∶ x = a0.f(a1,⋯, ar), c, i):

40 for ⟨o, htx⟩ ∈ PTS(a0, Sel(a0, c))i do

41 m
′
← VirtualCallDispatch(f, o), c

′
← Cons(o, htx, l, c)

42 PropPTS(⟨this
m

′

, Sel(this
m

′

, c
′)⟩, {⟨o, htx⟩})

43 PAGnew
∪
←− {⟨ret

m
′

, Sel(ret
m

′

, c
′)⟩ assign

−−−−→ ⟨x, Sel(x, c)⟩}

44 ∪ {⟨eret
m

′

, Sel(eret
m

′

, c
′)⟩ assign

−−−−→ ⟨tl, Sel(tl, c) ⟩}

45 ∪ {⟨ai, Sel(ai, c)⟩ assign
−−−−→ ⟨pi, Sel(pi, c

′)⟩ ∣ i ∈ [1, r]}

46 RMnew
∪
←− {⟨m′

, c
′⟩} \ RM

47 Function ProcessStmts():

48 for ⟨m, c⟩ ∈ RMnew do

49 for l ∶ x = new T ∈ Stmt(m) do

50 o = HeapAbs(l, T)

51 PropPTS(⟨x, Sel(x, c)⟩, {⟨o, Sel(o, c)⟩})

52 for l ∶ x = y ∈ Stmt(m) do

53 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ assign

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

54 for l ∶ x = y.f ∈ Stmt(m) do

55 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ load[f]

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

56 for l ∶ x.f = y ∈ Stmt(m) do

57 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ store[f]

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

58 for l ∶ throw x ∈ Stmt(m) do

59 THROWnew
∪
←− {⟨l ∶ throw x, c⟩}

60 for l ∶ x = a0.f(a1,⋯, ar) ∈ Stmt(m) do

61 CALLnew
∪
←− {⟨l ∶ x = a0.f(a1,⋯, ar), c⟩}

62 THROWnew
∪
←− {⟨l′ ∶ throw tl, c⟩}

63 FlushNew(RM)

64 Function ActivateConstraints():

65 while CALLnew ≠ ∅ do

66 for ⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ ∈ CALLnew do

67 HandleCall(l ∶ x = a0.f(a1,⋯, ar), c, “old”)

68 FlushNew(CALL)

69 ProcessStmts()

70 for ⟨l ∶ throw y, c⟩ ∈ THROWnew do

71 HandleThrow(l, ⟨y, Sel(y, c)⟩, “old”)

72 FlushNew(THROW)

73 for ⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

74 HandleLoad(⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩, “old”)

75 for ⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

76 HandleStore(⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩, “old”)

77 for ⟨y, c⟩ assign
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

78 PropPTS(⟨x, c
′⟩, PTS(y, c)old)

79 FlushNew(PAG)

80 Function FlushNew(IS):

81 ⟨ISold, ISnew⟩ ← ⟨ISold ∪ ISnew,∅⟩

D. He, J. Lu, and J. Xue 30:11

ProcessStmts. In lines 16-17, we process every call ⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ in CALL
(i.e., both CALLold and CALLnew), where curr = ⟨a0, Sel(a0, c)⟩. In handling such a call
(lines 38-45), new assign edges are introduced (lines 42-44) for modeling parameter passing,
and in addition, new reachable methods are recorded in RMnew (line 45). Note that thism

′

is
handled (line 41) differently from the other parameters p1, ..., pr (lines 42-44). A receiver
object in a0 flows only to the method dispatched on itself while the objects pointed
to by the other arguments a1, ..., ar flow to p1, ..., pr, respectively, for all the methods
dispatched with a0 as its receiver variable. For the new reachable methods just found,
new constraints are added with PTS, PAG, THROW and CALL being updated (lines 46-62).
Finally, in line 19, PTS(curr)new is flushed into PTS(curr)old as curr has been processed.
Step 4: Activating New Constraints (line 20). ActivateConstraints (lines 63-78)
is called to initiate the points-to fact propagation across the new constraints in CALLnew,
THROWnew and PAGnew found in Steps 2 – 3 by using the points-to facts in the “old”
parts of the relevant pointers involved in these constraints. In lines 64-68, we process
the calls in CALLnew in turn by discovering more new reachable methods at every call
⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ in CALLnew (by using PTS(a0, Sel(a0, c))old (line 66)) and
adding the new constraints for the new reachable methods found (line 68) just after
CALLnew is flushed into CALLold (line 67). According to Theorem 1, lines 64-75 (shaded in
blue) are needed to support variable-level context-sensitivity, as demonstrated by two
examples below. Note that lines 76-77 are needed even in a context-insensitive analysis in
order to support the on-the-fly call graph construction (among others) by activating the
points-to propagation from the “old” part of an argument to its corresponding parameter
in a newly found callee across its argument-to-parameter assign edge (line 44).

▶ Theorem 2. Algorithm 1 computes the context-sensitive points-to information in a program
exactly according to the rules given in Figure 3.

Proof. We prove that Algorithm 1 computes the points-to facts according to the pointer
analysis algorithm given in Figure 3 in the same manner. Thus, once a fixed point is reached,
Algorithm 1 produces exactly the same points-to facts as the rules given in Figure 3.

We first argue that during each iteration of Algorithm 1, one context-sensitive pointer
n ∈ (V ∪ H × F) × C is removed from W and the objects in PTS(n)new are handled in
exactly the same manner as in Figure 3: Step 1 handles [Assign] (lines 8-9), and [Throw]
(lines 10-11). Step 2 handles [Load] (lines 12-13), and [Store] (lines 14-15). Step 3
handles [Call] (lines 16-17) and extends PAG with the newly reachable methods (line
18). Whenever an object allocation statement is visited, [New] is handled immediately
(lines 48-50). Steps 2 and 3 serve only to add the newly discovered assign edges (constraints)
to PAG without performing the actual points-to fact propagation. Step 4 activates these
new constraints (lines 76-77). To support variable-level context-sensitivity according to
Theorem 1, lines 64-75 (in blue) are added to activate also the newly reachable calls in
CALLnew, throw statements in THROWnew, and loads/stores in PAGnew.
We then argue that at the start of each iteration of Algorithm 1, ∀n ∈ (V∪H× F)×C ∶
n ∈ W ⟺ PTS(n)new ≠ ∅. “⟹” is trivial by noting that n can only be added into W in
line 25 and PTS(n)new ≠ ∅ due to line 23. We prove “⟸” by induction. Initially, only
the LHS of each allocation statement in the entry methods is added into W (line 5 and
lines 48-50). Thus, “⟸” holds. Given the induction hypothesis that “⟸” holds at the
start of the i-th iteration, we prove that “⟸” still holds at the start of the (i + 1)-th
iteration. During the i-th iteration, only curr is removed from W at the start of the
iteration and its points-to facts in PTS(curr)new have been flushed in line 19 after they
have been handled. All the pointers that are added into W during this iteration must be
added by PropPTS, ensuring that their new points-to facts are not empty.

ECOOP 2022

30:12 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

By combining the two proof steps above, we conclude that for every n in (V ∪H × F) × C,
Algorithm 1 handles n in exactly the same manner as in Figure 3 for all the objects in PTS(n).
As a result, Algorithm 1 produces exactly the same points-to facts as Figure 3. ◀

Below we use two small example programs to illustrate how our worklist-based con-
straint solver (Algorithm 1) works in supporting pointer analyses with variable-level context-
sensitivity. In addition, we will also highlight the two subtleties involved (one in each example)
in designing this new constraint solver for computing the points-to facts iteratively.

In the first example, we explain how our constraint solver works in computing the points-to
facts for the program in Figure 1, by applying the 1-object-sensitive pointer analysis with
variable-level context-sensitivity discussed in Section 2.3 under which only the parameter x of
foo() is analyzed context-sensitively. We would like to stress the significance of Theorem 1
by highlighting the necessity of lines 64-75 (shaded in blue) in supporting variable-level
context-sensitivity. As foo() is called under two different receiver objects in lines 13 and 16,
x will be qualified by either [B1] or [B2]. Every other variable/object p, which is analyzed
context-insensitively, is identified by ⟨p, []⟩, which will be abbreviated to p for brevity.
Therefore, whenever we write PTS(p) without providing a context, we mean PTS(p, []).

Table 2 traces one particular execution of Algorithm 1, showing how PTS, RM, CALL, PAG,
and W are updated incrementally in a total of 17 iterations (with its initialization assumed
to start at 0). For this simple program. THROW is not relevant. To save space, we have
segmented these 17 iterations into six groups. For each group, we start with W being given in
the preceding group at the beginning of its first iteration and produce the results obtained
for PTS, RM, CALL, PAG, and W at the end of its last iteration. For PTS, we list explicitly both
the “old” and “new” parts for all its variables and fields. For RM, CALL, and PAG, we list only
their “new” parts as their “old” parts can be read-off easily from the earlier iterations given.

Iteration 0. Initially, we perform the initialization (lines 1-5) by taking main() as the
only entry of the program. Then we compute the points-to information iteratively during
all the iterations of the while loop in line 6 (i.e., Iterations 1–16).
Iterations 1-3. We start with the worklist W given at Iteration 0 and then obtain
the updated results as shown after o1, o2 and a1 have been processed during these
three iterations. At this point, CALLnew has already been flushed into CALLold so that
CALL = ⟨CALLold, CALLnew⟩ = ⟨{⟨line 13, []⟩, ⟨line 16, []⟩},∅⟩.
Iteration 4. We start with curr = “b1”, where PTS(b1)new = {B1}, indicating that we
are just about to analyze foo() under context [B1] (invoked in line 13 in the program).
In Step 3, a total of five edges are added to PAGnew. The three new assign edges are
introduced for modeling parameter passing for this particular call (two for the two
parameters x and a, and one for the return variable x). In addition, the store edge and
the load edge are introduced for representing the two statements in foo(). At the end of
Step 3, PTS(b1)new is flushed into PTS(b1)old. In Step 4, the propagation into the two
parameters, ⟨x, [B1]⟩ and a, from their corresponding actual arguments is made (lines
76-77).
Iterations 5-10. We propagate the newly found points-to information by processing a,
⟨x, [B1]⟩, and thisfoo in W and the others added later to W iteratively.
Iteration 11. We start with curr = “b2”, where PTS(b2)new = {B2}, so that we can
analyze foo() under context [B2] (invoked in line 16 in the program). We proceed exactly
as when foo() is analyzed under context [B1] at iteration 4 except that we no longer
need to introduce a1

assign
−−−−→ a and a

load[f]
−−−−→ t in Step 3, since both edges already exist in

PAG. Before Step 4 starts, PTS(b2)new has already been flushed into PTS(b2)old. In Step 4,

D. He, J. Lu, and J. Xue 30:13

Table 2 Tracing a particular execution of Algorithm 1 in applying the fine-grained 1-object-
sensitive pointer analysis discussed in Section 2.3 to the program given in Figure 1.

Iters V PTSold PTSnew RMnew CALLnew PAGnew W Points-to Fact Propagation

o1 ∅ {O1} {o1,
o2 ∅ {O2} {⟨line 13, []⟩, o2,
b1 ∅ {B1} b1,
b2 ∅ {B2} ⟨line 16, []⟩} b2,

0

a1 ∅ {A1}

{⟨main, []⟩} ∅

a1}

A1

a1

O1

o1

O2

o2

B1

b1

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 ∅ {B1}
b2 ∅ {B2}

1-3

a1 {A1} ∅

∅ ∅ ∅
{b1,

b2}
SAME AS ABOVE

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 ∅ {B2}
a1 {A1} ∅

thisfoo ∅ {B1}
⟨x, B1⟩ ∅ {O1}

4

a ∅ {A1}

{⟨foo, [B1]⟩} {⟨line 7, [B1]⟩}

{o1
assign
−−−−→ ⟨x, [B1]⟩,

a1
assign
−−−−→ a,

⟨x, [B1]⟩ assign
−−−−→ v1,

⟨x, [B1]⟩ store[f]
−−−−→ a,

a
load[f]
−−−−→ t}

{b2,

a,

⟨x, [B1]⟩,
thisfoo}

A1

a1

a

O1

o1

⟨x, [B1]⟩

v1

O2

o2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 ∅ {B2}
a1 {A1} ∅

v1 {O1} ∅

thisfoo {B1} ∅

⟨x, [B1]⟩ {O1} ∅

a {A1} ∅

A1.f {O1} ∅

5-10

t {O1} ∅

∅ ∅
{⟨x, [B1]⟩ assign

−−−−→ A1.f,

A1.f
assign
−−−−→ t}

{b2}

A1

a1

a

A1.f

t

O1

o1

⟨x, [B1]⟩

v1

O2

o2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 {B2} ∅

a1 {A1} ∅

v1 {O1} ∅

thisfoo {B1} {B2} ,
⟨x, [B1]⟩ {O1} ∅

⟨x, [B2]⟩ ∅ {O2}
a {A1} ∅

A1.f {O1} {}

11

t {O1} ∅

{⟨foo, [B2]⟩} {⟨line 7, [B2]⟩}

{o2
assign
−−−−→ ⟨x, [B2]⟩,

⟨x, [B2]⟩ assign
−−−−→ v2,

⟨x, [B2]⟩ store[f]
−−−−→ a

⟨x, [B2]⟩ assign
−−−−→ A1.f}

{thisfoo
,

⟨x, [B2]⟩}

A1

a1

a

A1.f

t

O1

o1

⟨x, [B1]⟩

v1

O2

o2

⟨x, [B2]⟩

v2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 {B2} ∅

a1 {A1} ∅

v1 {O1} ∅

v2 {O2} ∅

thisfoo {B1, B2} ∅

⟨x, [B1]⟩ {O1} ∅

⟨x, [B2]⟩ {O2} ∅

a {A1} ∅

A1.f {O1, O2} ∅

12-16

t {O1, O2} ∅

∅ ∅ ∅ ∅ SAME AS ABOVE

ECOOP 2022

30:14 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

the points-to information of ⟨x, [B2]⟩ is updated (lines 76-77). In addition, we discover
⟨x, [B2]⟩ assign

−−−−→ ⟨A1.f, []⟩ from ⟨x, [B2]⟩ store[f]
−−−−→ ⟨a, []⟩ in lines 74-75 (Theorem 1), since

PTS(a, [])old = ⟨A1, []⟩. Otherwise, O2 in PTS(t) will be missed unsoundly.
Iterations 12-16. After these iterations have been done, a fixpoint will be reached.

In Algorithm 1, its while loop in line 64 is needed for supporting a number of different
flavors of context-sensitivity. Next, we use a second example to explain its necessity for
supporting k-callsite-based context-sensitive pointer analysis (i.e., kcfa [41]) with variable-
level context-sensitivity. This loop is needed to avoid a rare case under which W = ∅ but
CALLnew ≠ ∅, implying that the new reachable methods in CALLnew must still need to be
analyzed to look for the new points-to facts despite the fact that the worklist W is empty.

In this second example given in Figure 4, three classes, A, B, and C, are defined, where
create() and wcreate() in B and wcreate2() in C are used to establish a chain of method
calls in the program, where wcreate2() is a wrapper method for wcreate1(), which is a
wrapper method for create(). In main(), O1 is first allocated, then stored into a1.f, and
finally, retrieved from a1.f and assigned to v1. Similarly, O2 is first allocated, then stored
into a2.f, and finally, retrieved from a2.f and assigned to v2.

1 void main() {
2 C c1 = new C(); // C1
3 C c2 = c1;
4 A a1 = c1.wcreate2(); // c1
5 A a2 = c2.wcreate2(); // c2
6 Object o1 = new Object(); // O1
7 Object o2 = new Object(); // O2
8 a1.f = o1;
9 a2.f = o2;

10 Object v1 = a1.f;
11 Object v2 = a2.f;
12 }
13
14 class A { Object f; }

15 class B {
16 A create() {
17 A r1 = new A(); // A1
18 return r1; }
19 A wcreate() {
20 A r2 = this.create(); // c4
21 return r2;
22 }}
23 class C {
24 A wcreate2() {
25 B b1 = new B(); // B1
26 A r3 = b1.wcreate(); // c3
27 return r3;
28 }}

Figure 4 An example for illustrating the necessity of the while loop in line 64 of Algorithm 1 for
supporting callsite-based context-sensitive pointer analyses with variable-level context-sensitivity.

Let us analyze this program by using 4cfa with variable-level context-sensitivity, under
which r1, r2, r3 and A1 are context-sensitive but all the remaining variables and objects are
context-insensitive. In particular, as is usually done in practice [22, 14, 25], the length of a
context for r1, r2 and r3 is limited by 4 and the length of a context for A1 is limited by 3.

If we apply our constraint solver (Algorithm 1) to solve this particular 4cfa-style pointer
analysis for this program, its points-to facts will be computed soundly as desired. In particular,
v1 will be found to point to O1 and v2 will be found to point to O2. However, if we apply
our constraint solver with its line 64 being deleted, then the resulting modified constraint
solver will be unsound. For this particular program, a2 will be found point to no object at
all, and consequently, that v2 will also be regarded as pointing to no object at all.

Table 3 traces a particular execution of this modified constraint solver (in 15 iterations):
Iterations 0-2. During the initialization, i.e., at Iteration 0 (lines 1-5), main() is the
only entry method for the program. By processing its statements, we end up adding two
new calls (for its lines 4-5) to CALLnew, five new edges (for its lines 3 and 8-11) to PAGnew
and {c1, o1, o2} (for its lines 2 and 6-7) to W. At iterations 1-2, o1 and o2 are handled
by just flushing PTS(o1)new and PTS(o2)new into PTS(o1)old and PTS(o2)old, respectively.

D. He, J. Lu, and J. Xue 30:15

Table 3 Tracing a particular execution of Algorithm 1 with its while loop in line 64 being deleted
in applying 4cfa with variable-level context-sensitivity to the program given in Figure 4, under
which all the variables and objects except r1, r2, r3, and A1 are context-insensitive.

Iters V PTSold PTSnew RMnew CALLnew PAGnew W

c1 ∅ {C1}
o1 {O1} ∅ {⟨line 4, []⟩,
o2 {O2} ∅

⟨line 5, []⟩}
0-2 {⟨main, []⟩}

{c1
assign
−−−−→ c2

o1
store[f]
−−−−→ a1

o2
store[f]
−−−−→ a2

a1
load[f]
−−−−→ v1

a2
load[f]
−−−−→ v2}

{c1}

c1 {C1} ∅

o1 {O1} ∅

o2 {O2} ∅

c2 ∅ {C1}
thiswcreate2 {C1} ∅

b1 {B1} ∅

thiswcreate {B1} ∅

thiscreate {B1} ∅

⟨r1, [c4, c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r2, [c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r3, [c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

a1 {⟨A1, [c4, c3, c1]⟩} ∅

⟨A1.f, [c4, c3, c1]⟩} {O1} ∅

3-13

v1 {O1} ∅

{⟨wcreate2, [c1]⟩
⟨wcreate, [c3, c1]⟩

⟨create, [c4, c3, c1]⟩}

{⟨line 26, [c1]⟩
⟨line 20, [c3, c1]⟩}

{⟨r3, [c1]⟩ assign
−−−−→ a1

⟨r2, [c3, c1]⟩ assign
−−−−→ ⟨r3, [c1]⟩

⟨r1, [c4, c3, c1]⟩ assign
−−−−→ ⟨r2, [c3, c1]⟩

o1
assign
−−−−→ ⟨A1.f, [c4, c3, c1]⟩

⟨A1.f, [c4, c3, c1]⟩ assign
−−−−→ v1}

{c2}

c1 {C1} ∅

o1 {O1} ∅

o2 {O2} ∅

c2 {C1} ∅

thiswcreate2 {C1} ∅

b1 {B1} ∅

thiswcreate {B1} ∅

thiscreate {B1} ∅

⟨r1, [c4, c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r2, [c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r3, [c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

a1 {⟨A1, [c4, c3, c1]⟩} ∅

⟨A1.f, [c4, c3, c1]⟩} {O1} ∅

14

v1 {O1} ∅

{⟨wcreate2, [c2]⟩
⟨wcreate, [c3, c2]⟩}

{⟨line 26, [c2]⟩
⟨line 20, [c3, c2]⟩}

{⟨r3, [c2]⟩ assign
−−−−→ a2

⟨r2, [c3, c2]⟩ assign
−−−−→ ⟨r3, [c2]⟩}

Iterations 3-13. We propagate the newly found points-to information by processing
c1 and others added later to W during these few iterations iteratively while keeping c2
always in W. This particular execution order is possible, since the items (i.e., unprocessed
pointers) in W are processed non-deterministically. At the end of Iteration 13, the points-to
information for all the variables except a2 and v2 has been obtained.
Iteration 14. We start with curr = “c2”, where PTS(c2)new = {C1}, indicating that
we are just about to analyze wcreate2() under context [c2] (invoked in line 5 in the
program). In Step 3, ⟨r3, [c2]⟩ assign

−−−−→ a2 is added to PAGnew and a new call in line 26
in the program invoked under context [c2] is discovered and added into CALLnew. We
no longer add thiswcreate2 and b1 to W as they do not point to any new points-to fact
discovered. In Step 4, we handle the new call (line 26 in the program under [c2]) in
CALLnew with PTS(b1)old = {B1} (lines 65-66) and find a new reachable method wcreate()
under context [c3, c2]. Finally, we call ProcessStmts (line 68) to process the statements
in this newly reachable method, establish ⟨r2, [c3, c2]⟩ assign

−−−−→ ⟨r3, [c2]⟩, and discover
one more call (line 20 in the program) under context [c3, c2] (highlighted in red). In
the modified constraint solver, the while loop in line 64 (Algorithm 1) has been deleted.
As W = ∅, this new call will not be processed during the next iteration. As a result, a2
and v2 will be concluded not to point to any object unsoundly. However, our constraint
solver, with this while loop being used in line 64, works soundly.

ECOOP 2022

30:16 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

3.4 Handling Complex Language Features

We have closely modeled the handling of complex Java features and semantic complexities
after the logic in Doop [8] (as depicted at 5 in Figure 2), so that Qilin achieves exactly the
same precision for a program as Doop except for a few tool-specific variables introduced.

We have modeled the system/main thread groups and main thread to identify a variety
of the entry methods of a Java program (line 4 of Algorithm 1), Java’s reference objects (e.g.,
WeakReference and SoftReference) and reference queues, and class initialization. For example,
JVM will register reference objects to reference queues by calling Finalizer.register() so
that finalize() methods can be invoked. In addition, JVM will initialize classes/interfaces
by calling their static initializers, <clinit>(). To handle such implicit calls by JVM, we
dynamically inject static calls into the body of a FakeMain() method (regarded as an entry
of the program) to simulate their behavior during the pointer analysis for a given Java
program.

To model a native method, we have designed a handler to simulate its semantics by generat-
ing a method body in Jimple [54], the IR (Intermediate Representation) for Soot. Currently,
Qilin handles the same set of native methods (e.g., thread:start(), DoPrivileged() and
clone()) supported by Doop in exactly the same way.

As for Java reflection, Doop can handle it either statically or dynamically (by relying on
the reflective targets found by Tamiflex [6]). We have taken the latter approach since it has
been used exclusively in the pointer analysis community in the past few years [48, 25, 30, 14].
Qilin’s reflection handler supports exactly the same set of the most commonly used Java
reflection APIs (e.g., ClassForName() and ClassNewInstance()) as in Doop.

Qilin, as in Doop, handles cast and assignment compatibility by using the declared type
of a variable to filter out type-incompatible pointed-to objects during the pointer analysis.
As is standard, arrays are considered monolithic (without distinguishing their elements). In
particular, we filter out type-incompatible objects stored in an array by using the declared
type of its elements instead of java.lang.Object.

In Qilin, we handle static fields and static methods in the standard manner. As global
variables, static fields are analyzed context-insensitively. A static method m() is modeled
as a special instance method by just interpreting a call to m() as this.m() and proceeding
as if it were an instance method defined in java.lang.Object. As a result, static methods
can be analyzed uniformly under all flavors of context-sensitivity except for hybrid context-
sensitivity [22], under which static and virtual calls are distinguished.

4 Using the Qilin Framework

We first describe a few significant instantiations of Cons (Section 4.1), Sel (Section 4.2),
and HeapAbs (Section 4.3), respectively. We then combine these instantiations to obtain the
pointer analyses provided in Qilin’s toolbox depicted at 1 in Figure 2 (Section 4.4).

Given a context c = [e1,⋯, en] and a context element e0, we write e0 ++ c to denote
[e0, e1,⋯, en], and ⌈c⌉k for [e1,⋯, ek] (i.e., c restricted to its prefix of length k).

4.1 Context Constructors

We instantiate Cons(o, htx, l, ctx) used in [Call] (Figure 3) to define five common types of
contexts for a method (“Insens”, “Callsite”, “Object”, “Type”, and “Hybrid” listed at 2 in
Figure 2). Note that in our framework, k-limiting will be applied by Sel.

D. He, J. Lu, and J. Xue 30:17

Insens. For a context-insensitive pointer analysis [2, 23], all methods are analyzed under
the same fixed empty context (without distinguishing their calling contexts):

Consinsens(o, htx, l, ctx) = [] (1)

Callsite. A callsite-sensitive pointer analysis [40], known also as control-flow analysis
(CFA) [41], uses a callsite l as a context element. Therefore, the context constructor is:

Conscfa(o, htx, l, ctx) = l ++ ctx (2)

Object. An object-sensitive pointer analysis [32, 33] uses a receiver object o as a context
element. Thus, the context constructor simply becomes:

Consobj(o, htx, l, ctx) = o ++ htx (3)

Type. A type-sensitive pointer analysis [42], which is a more scalable but less precise
alternative of an object-sensitive pointer analysis, resorts to the class type containing the
method where a receiver object o is allocated, denoted as TypeContg(o). Thus, we have:

Constype(o, htx, l, ctx) = TypeContg(o) ++ htx (4)

Hybrid. A hybrid pointer analysis [22] distinguishes static and dynamic call sites:

Conshyb(o, htx, l, ctx) = {o ++ htx l ∉ SC

car(ctx) ++ l ++ cdr(ctx) l ∈ SC
(5)

where SC is the set of all static call sites in the program. Here, car and cdr are standard,
with car pulling the first element of a list and cdr returning the list without the car.
For a non-static callsite, the new context is constructed identically as in Equation (3).
For a static callsite, the new context also includes the invocation site, which has been
shown to be effective in improving the precision of pointer analysis [22].

4.2 Context Selectors
It is simple to instantiate a context selector Sel to support both method-level and variable-
level context-sensitivity, including “Uniform”, “Heuristic”, “Selective”, and “Partial” listed at
2 in Figure 2. Given a calling context for a method, a context selector Sel picks some of its
context elements to define the contexts for the variables/objects in the method by applying
k-limiting [41], where k can vary across the variables/objects in the same method.

Uniform. To support traditional method-level context-sensitive pointer analyses that rely
on k-limited context abstractions [40, 32, 42, 22], a “uniform” context selector is used:

SelU(ctx, e) = {⌈ctx⌉k e ∈ V
⌈ctx⌉hk e ∈ H

(6)

where the local variables (objects allocated) in a method adopt its calling context ctx

uniformly under k-limiting (hk-limiting). In practice, hk = k − 1 is often used.
Heuristic. For efficiency reasons at little loss of precision, the objects of certain types from
an empirically determined set, T, are usually analyzed context-insensitively as in Doop
[8] and Wala [16], where the following definition of T is the most popularly used:

T = {StringBuffer, StringBuilder, Throwable} (7)

ECOOP 2022

30:18 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Let SubTypeOf(T) be the set including the types in T and their subtypes. Let TypeOf(o)
be the dynamic type of an object o. A “heuristic” context selector is given by:

SelH(ctx, e) = {[] e ∈ H ∧ TypeOf(e) ∈ SubTypeOf(T)
SelU(ctx, e) otherwise

(8)

Selective. Under “selective” method-level context-sensitivity [43, 25], only a subset of
(precision-critical) methods, Csml, in the program is selected to be analyzed context-
sensitively:

SelS(ctx, e) = {[] MethodOf(e) ∉ Csml
SelU(ctx, e) MethodOf(e) ∈ Csml

(9)

Partial. Under “partial” method-level context-sensitivity [30, 14], only a subset of
(precision-critical) variables/objects in the program, Cpml, is selected to be analyzed
context-sensitively:

SelP(ctx, e) = {[] e ∉ Cpml
SelU(ctx, e) e ∈ Cpml

(10)

The power of Qilin goes beyond existing fine-grained context-sensitive pointer analyses
[43, 25, 30, 14]. In our pointer analysis framework, different variables/objects can be analyzed
completely independently under different context abstractions, thus providing support for
fine-grained context selectivity in its full generality.

4.3 Heap Abstractors
We can instantiate HeapAbs(l, T) in [New] (Figure 3) to define a range of heap abstractions
used, including “Allocation-Site”, “Heuristic”, and “Type-Consistency” listed at 2 in Figure 2.

Allocation-Site. This represents the most widely used heap abstraction:

HeapAbsA(l, T) = Ol (11)

where Ol is an abstract object created at the allocation site identified by its label l.
Heuristic. In practice, for efficiency reasons at little loss of precision, the objects of a
particular type may be distinguished per dynamic type (instead of per object). As a
result, we obtain the following “heuristic” heap abstractor (with T given in Eq. (7)):

HeapAbsH(l, T) = {OT T ∈ SubTypeOf(T)
Ol otherwise

(12)

Type-Consistency. For the “type-consistent” heap abstraction proposed in [48], we have:

HeapAbsT (l, T) = rep(S(Ol)) (13)

where S(Ol) is the equivalence class containing the objects that are type-consistent as Ol

and rep(S(Ol)) is its representative. In other words, all the allocation sites are divided
into equivalence classes so that those in the same equivalence class are not distinguished.

D. He, J. Lu, and J. Xue 30:19

4.4 Qilin’s Toolbox
Qilin, as shown at 1 in Figure 2, includes already a rich set of pointer analyses for supporting
(1) insens (Andersen’s context-insensitive analysis) [23], (2) all common flavors of method-
level context-sensitivity: kcfa (k-callsite-sensitivity) [40], kobj (k-object-sensitivity) [32, 33],
ktype (k-type-sensitivity) [42], S-kobj (hybrid k-object-sensitive analysis) [22], and (3) many
flavors of fine-grained context-sensitivity, enabled by different pre-analyses (for defining Sel
and HeapAbs): Bean [49], Mahjong [48], Zipper [25], Eagle [30], Turner [14], Conch
[15], Data-Driven [19], and Context-Tunneling [17].

Table 4 lists a subset of these analyses (evaluated below) and their instantiations.
Given two context selectors s1 and s2, we define Min(s1, s2) = λ (ctx, e). if ∣s1(ctx, e)∣ ⩽

∣s2(ctx, e)∣ then s1(ctx, e) else s2(ctx, e). Each analysis is specified by a triple [Cons, Sel,

HeapAbs]. Z-kobj, E-kobj, and T-kobj are the versions of kobj performed with fine-grained
context-sensitivity prescribed by Zipper [25], Eagle [30], and Turner [14], respectively.

Table 4 A subset of pointer analyses instantiated in Qilin.

Pointer Analysis Instantiation (Parameterization)
insens [23] [Eq. (1), Eq. (8), Eq. (12)]
kcfa [40] [Eq. (2), Eq. (8), Eq. (12)]

kobj [32, 33] [Eq. (3), Eq. (8), Eq. (12)]
S-kOBJ [22] [Eq. (5), Eq. (8), Eq. (12)]
Z-kOBJ [25] [Eq. (3), Min(Eq. (9), Eq. (8)), Eq. (12)]
E-kOBJ [30] [Eq. (3), Min(Eq. (10), Eq. (8)), Eq. (12)]
T-kOBJ [14] [Eq. (3), Min(Eq. (10), Eq. (8)), Eq. (12)]

5 Evaluation

We have implemented Qilin as a standalone tool in Java in 20.3 KLOC (including 4.7
KLOC at its core) that operates on the Jimple IR [54] of Soot (version 4.2.1) [53]. Qilin
(including a micro-benchmark suite consisting of ≈100 unit test cases) has been open-sourced
and maintained at https://github.com/QiLinPTA/QiLin.

Our evaluation aims to show that Qilin has met all its four design goals by answering
the following four questions positively:

RQ1. Is Qilin precise in terms of the precision achieved against the state-of-the-art?
RQ2. Is Qilin efficient in terms of the analysis time taken against the state-of-the-art?
RQ3. Is Qilin modular in allowing its common codebase to be shared?
RQ4. Is Qilin effective in supporting fine-grained context-sensitive pointer analyses?

We report and analyze our results by focusing on the seven representative analyses listed in
Table 4, insens, 1cfa, 2obj and S-2obj (with method-level context-sensitivity) and E-2obj,
T-2obj and Z-2obj (with fine-grained context-sensitivity). We address RQ1 and RQ2 by
comparing Qilin with Doop [8] (using a recent stable version 4.24.0 with Soufflé Datalog
engine 1.5.1 [20]) in supporting insens, 1cfa, 2obj and S-2obj. Note that Doop has been
tested with Soufflé 1.5.1 and Soufflé 2.0.2, but Doop is slower under Soufflé 2.0.2 than under
Soufflé 1.5.1 in our evaluation. During this process, we have fixed a number of bugs in Doop
that may have caused its unsoundness as also reported earlier [37]. We address RQ3 and
RQ4 by considering how Qilin supports E-2obj, T-2obj and Z-2obj (among others).

We have used a large Java library (JDK1.6.0_45) and 12 popular Java programs (including
9 benchmarks from DaCapo 2006 [5] and 3 Java applications, checkstyle, JPC and findbugs),
which are frequently used for evaluating pointer analysis algorithms in the literature [43,

ECOOP 2022

https://github.com/QiLinPTA/QiLin

30:20 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

22, 48, 25, 14, 28, 15]. We have excluded jython and hsqldb since their context sensitive
analyses do not scale due to overly conservative handling of Java reflection [50]. By using
DaCapo 2006 as in these earlier papers, we are able to evaluate these earlier algorithms in
Qilin with reference to the results reported earlier. We have carried out all the experiments
on an eight-core Intel(R) Xeon(R) CPU E5-2637 3.5GHz machine with 512GB of RAM.

5.1 RQ1: Precision
As shown in Table 5, Qilin delivers exactly the same precision as Doop for insens, 1cfa,
2obj and S-2obj, since both tools (1) use the same logic points-to definitions (Section 3.3),
and (2) cover the same complex Java features identically (Section 3.4). The precision of a
pointer analysis is measured in terms of four common metrics [42, 48, 30, 25]: (1) #call-edges:
the number of call graph edges discovered, (2) #fail-cast: the number of type casts that
may fail, (3) #poly-calls: the number of polymorphic calls discovered, and (4) #avg-pts:
the average number of objects pointed by a variable, i.e., the average points-to set size by
considering only the variables in the Java methods (i.e., excluding all tool-specific temporary
variables introduced, and consequently, the native methods summarized).

For a total of 12 programs × 4 analyses = 48 configurations evaluated, Qilin yields the
same results as Doop for all the four metrics. In addition, we have also validated that both
produce exactly the same points-to sets for all the variables considered. Thus, Qilin represents
a modern framework for supporting precise pointer analyses for large Java programs.

Note that Qilin and Doop may introduce a few different temporary variables in modeling
native methods and certain language constructs. The differences in their points-to facts will
not affect the points-to information computed for the variables in a Java method.

5.2 RQ2: Efficiency
Table 5 also compares Qilin with Doop in terms of the efficiency of insens, 1cfa, 2obj, and
S-2obj achieved. The time budget for running an analysis on a program is 12 hours. The
analysis time of a program is an average of 3 runs. Qilin currently uses a single-threaded
constraint solver while Doop uses a multi-threaded Datalog engine, Soufflé. According to [3],
Soufflé delivers its maximum performance at 4 or 8 threads. While Doop defaults to 4
threads, we have used 8 threads to enable it to achieve slightly better performance. Note
that the analysis time of a program under Doop is given as the analysis time spent by its
Datalog engine only (without including the time spent by its fact generator, which is claimed
to be amortizable across a number of analyses applied to the same program).

For the same 12 programs × 4 analyses = 48 configurations evaluated, Qilin outperforms
Doop substantially, with the speedups ranging from 0.9x (for checkstyle under 2obj) to
6.3x (for xalan also under 2obj). Note that Qilin is slightly slower than Doop only under
2obj in analyzing checkstyle. The overall average speedup achieved by Qilin over Doop
for all the four analyses across the 12 programs is 2.4x. This increases to 2.9x when Doop
switches from 8 to 4 threads and 5.1x when Doop switches to a single thread.

As Qilin achieves exactly the same precision as Doop (Section 5.1), its high performance
is attributed to our new incremental worklist-based constraint solver, which runs significantly
faster than Soufflé [39, 20]. Thus, this work confirms (for the first time) that an imperative
framework (implemented in Java) that relies on a well-crafted constraint solver can outperform
a declarative counterpart that relies on a (multi-threaded) Datalog engine, despite that
Qilin is currently single-threaded and Doop has been carefully optimized in over one
decade. Qilin’s high efficiency is expected to provide significant performance benefits for
its client applications, such as call graph construction tools [23, 1, 38], bug detection tools
[34, 55, 27, 10] and compiler optimization techniques[9, 47].

D. He, J. Lu, and J. Xue 30:21

Table 5 The efficiency and precision of Qilin and Doop in supporting insens, 1cfa, 2obj, and
S-2obj. For all metrics (except speedups of Qilin over Doop in blue), smaller is better.

insens 1cfa 2obj S-2objProgram Metrics Doop Qilin Doop Qilin Doop Qilin Doop Qilin

Time (s) 27 11 (2.5x) 61 24 (2.6x) 116 55 (2.1x) 90 46 (2.0x)
#call-edges 57472 57472 56226 56226 51319 51319 51318 51318
#fail-casts 1127 1127 930 930 511 511 439 439
#poly-calls 1987 1987 1933 1933 1643 1643 1642 1642

antlr

#avg-pts 36.498 36.498 32.106 32.106 9.055 9.055 8.945 8.945

Time (s) 20 11 (1.8x) 85 30 (2.9x) 1503 788 (1.9x) 1450 800 (1.8x)
#call-edges 67856 67856 65689 65689 56837 56837 56836 56836
#fail-casts 2088 2088 1891 1891 1316 1316 1244 1244
#poly-calls 2344 2344 2171 2171 1714 1714 1713 1713

bloat

#avg-pts 52.992 52.992 47.391 47.391 15.387 15.387 15.287 15.287

Time (s) 51 19 (2.7x) 174 41 (4.3x) 411 222 (1.9x) 435 370 (1.2x)
#call-edges 86806 86806 84116 84116 72805 72805 72801 72801
#fail-casts 2563 2563 2207 2207 1348 1348 1183 1183
#poly-calls 2732 2732 2614 2614 2068 2068 2067 2067

chart

#avg-pts 64.751 64.751 52.949 52.949 5.796 5.796 5.541 5.541

Time (s) 115 37 (3.1x) 482 132 (3.7x) 8556 4701 (1.8x) 8493 4266 (2.0x)
#call-edges 183288 183288 178585 178585 162934 162934 162876 162876
#fail-casts 5114 5114 4732 4732 3648 3648 3542 3542
#poly-calls 10738 10738 10455 10455 9773 9773 9718 9718

eclipse

#avg-pts 137.322 137.322 62.446 62.446 16.115 16.115 14.944 14.944

Time (s) 29 9 (3.3x) 51 17 (3.1x) 52 25 (2.1x) 48 22 (2.2x)
#call-edges 40558 40558 39285 39285 34424 34424 34424 34424
#fail-casts 914 914 710 710 396 396 315 315
#poly-calls 1223 1223 1156 1156 842 842 842 842

fop

#avg-pts 25.526 25.526 20.469 20.469 4.399 4.399 4.262 4.262

Time (s) 12 9 (1.3x) 28 15 (1.9x) 38 25 (1.6x) 34 23 (1.5x)
#call-edges 39809 39809 38529 38529 33643 33643 33642 33642
#fail-casts 923 923 727 727 396 396 324 324
#poly-calls 1294 1294 1228 1228 935 935 934 934

luindex

#avg-pts 20.807 20.807 16.290 16.290 4.480 4.480 4.325 4.325

Time (s) 13 9 (1.4x) 31 17 (1.9x) 73 37 (2.0x) 67 36 (1.9x)
#call-edges 43153 43153 41841 41841 36525 36525 36524 36524
#fail-casts 1035 1035 831 831 411 411 332 332
#poly-calls 1505 1505 1432 1432 1133 1133 1132 1132

lusearch

#avg-pts 22.418 22.418 17.625 17.625 4.461 4.461 4.299 4.299

Time (s) 35 14 (2.6x) 103 30 (3.5x) 104 53 (2.0x) 94 56 (1.7x)
#call-edges 69713 69713 67899 67899 60030 60030 60029 60029
#fail-casts 2273 2273 2026 2026 1416 1416 1333 1333
#poly-calls 2989 2989 2871 2871 2390 2390 2389 2389

pmd

#avg-pts 37.331 37.331 31.764 31.764 6.036 6.036 5.947 5.947

Time (s) 39 11 (3.6x) 68 22 (3.1x) 4046 638 (6.3x) 823 405 (2.0x)
#call-edges 54147 54147 52657 52657 46856 46856 46855 46855
#fail-casts 1305 1305 1058 1058 601 601 516 516
#poly-calls 2101 2101 2010 2010 1657 1657 1656 1656

xalan

#avg-pts 29.968 29.968 24.529 24.529 6.037 6.037 5.924 5.924

Time (s) 64 16 (4.0x) 146 36 (4.1x) 6308 7148 (0.9x) 5338 5535 (1.0x)
#call-edges 80291 80291 77881 77881 67285 67285 67276 67276
#fail-casts 1941 1941 1680 1680 1117 1117 1023 1023
#poly-calls 2778 2778 2655 2655 2241 2241 2234 2234

checkstyle

#avg-pts 47.925 47.925 39.536 39.536 8.048 8.048 7.706 7.706

Time (s) 32 21 (1.5x) 127 40 (3.2x) 211 132 (1.6x) 264 192 (1.4x)
#call-edges 95055 95055 91661 91661 81465 81465 81429 81429
#fail-casts 2254 2254 1894 1894 1357 1357 1208 1208
#poly-calls 4960 4960 4840 4840 4282 4282 4275 4275

JPC

#avg-pts 45.533 45.533 32.175 32.175 6.045 6.045 5.841 5.841

Time (s) 54 20 (2.8x) 198 48 (4.1x) 3887 1644 (2.4x) 3856 1593 (2.4x)
#call-edges 106065 106065 102352 102352 88107 88107 88107 88107
#fail-casts 3457 3457 3000 3000 2058 2058 1968 1968
#poly-calls 4534 4534 4308 4308 3679 3679 3679 3679

findbugs

#avg-pts 64.510 64.510 53.842 53.842 9.102 9.102 9.052 9.052

ECOOP 2022

30:22 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Table 6 Human effort required in integrating fine-grained context-sensitive analysis into Qilin.

Pointer Analysis Source Code (#LOC) Supporting Code (#LOC)
Bean [49] 355 41

Mahjong [48] 666 51
Data-Driven [19] 1062 39

Zipper [25] 1474 35
Context-Tunneling [17] 1151 29

Eagle [30] 357 75
Turner [14] 769 75
Conch [15] 1230 55

5.3 RQ3: Modularity

Table 7 The efficiency and precision of E-2obj, T-2obj, and Z-2obj for performing kobj under
fine-grained context-sensitivity enabled by Eagle [30], Turner [14], and Zipper [25], respectively.
The speedups of each analysis (in blue) is computed with 2obj (shown in Table 5) as the baseline.

Metrics Program E-2obj T-2obj Z-2obj Program E-2obj T-2obj Z-2obj
Time (s) 38 (1.4x) 18 (3.1x) 31 (1.8x) 27 (1.4x) 19 (1.9x) 19 (1.9x)

#call-edges 51319 51319 51505 36525 36525 36720
#fail-casts 511 511 532 411 411 441
#poly-calls 1643 1643 1666 1133 1133 1162
#avg-pts

antlr

9.055 9.067 9.492

lusearch

4.461 4.473 5.071
Time (s) 577 (1.4x) 302 (2.6x) 663 (1.2x) 38 (1.4x) 25 (2.1x) 31 (1.7x)

#call-edges 56837 56837 57059 60030 60030 60180
#fail-casts 1316 1316 1339 1416 1416 1447
#poly-calls 1714 1714 1746 2390 2390 2412
#avg-pts

bloat

15.387 15.403 16.381

pmd

6.036 6.045 6.441
Time (s) 165 (1.3x) 119 (1.9x) 45 (4.9x) 366 (1.7x) 297 (2.1x) 285 (2.2x)

#call-edges 72805 72805 73243 46856 46856 47005
#fail-casts 1348 1348 1395 601 601 618
#poly-calls 2068 2068 2094 1657 1657 1680
#avg-pts

chart

5.796 5.809 6.474

xalan

6.037 6.055 6.550
Time (s) 2929 (1.6x) 1904 (2.5x) 2000 (2.4x) 3776 (1.9x) 2813 (2.5x) 1882 (3.8x)

#call-edges 162934 162934 163176 67285 67285 67511
#fail-casts 3648 3648 3707 1117 1117 1144
#poly-calls 9773 9773 9834 2241 2241 2278
#avg-pts

eclipse

16.115 16.305 16.413

checkstyle

8.048 8.152 9.257
Time (s) 17 (1.5x) 12 (2.1x) 13 (1.9x) 100 (1.3x) 75 (1.8x) 54 (2.4x)

#call-edges 34424 34424 34615 81465 81465 81741
#fail-casts 396 396 421 1357 1357 1393
#poly-calls 842 842 868 4282 4282 4337
#avg-pts

fop

4.399 4.416 4.977

JPC

6.045 6.062 6.514
Time (s) 18 (1.4x) 11 (2.3x) 14 (1.8x) 925 (1.8x) 179 (9.2x) 160 (10.3x)

#call-edges 33643 33643 33833 88107 88107 88172
#fail-casts 396 396 422 2058 2058 2091
#poly-calls 935 935 960 3679 3679 3687
#avg-pts

luindex

4.480 4.494 5.065

findbugs

9.102 9.139 9.300

Qilin supports a variety of context-sensitive pointer analyses that can all be specified
modularly as variations on a common code base with their context-sensitivity parameterized
by Cons, Sel, and HeapAbs. We use #LOC, the number of LOC required in integrating
a pointer analysis algorithm into Qilin, to measure the modularity of our framework in
supporting the design and implementation of new algorithms. While #LOC is not equivalent

D. He, J. Lu, and J. Xue 30:23

to the amount of engineering efforts involved, a small #LOC needed indicates that our
framework is highly modular. For the four traditional method-level analyses, insens, kcfa,
kobj and S-kobj, listed in Table 4 and evaluated above, their parameterization requires 15,
43, 40 and 61 LOC, respectively, totaling only 98 LOC with the commonalities factored out.

In addition, Qilin also accommodates well a range of recently proposed fine-grained
context-sensitive pointer analyses [49, 48, 19, 17, 25, 30, 14], as demonstrated in Table 6.
For each analysis, the second column lists the number of LOC required for defining the
context-sensitivity proposed (in the form of a pre-analysis), and the third column gives the
number of LOC required for parameterizing it in Qilin (requiring only an average of 50 LOC
each). We have integrated all these seven analyses into Qilin except the machine learning
phases used in Data-Driven [19] and Context-Tunneling [17].

5.4 RQ4: Fine-Grained Context-Sensitivity

Qilin is expected to represent a common framework in which different pointer analysis
algorithms can be designed and evaluated effectively. Table 7 compares the efficiency and
precision of E-2obj, T-2obj, and Z-2obj (the three fine-grained variations of 2obj listed in
Table 4) enabled by Eagle [30], Turner [14], and Zipper [25], respectively, with all the
parameterization efforts given in Table 6 (in terms of #LOC added). The speedups of each
of the three analyses is computed with 2obj (shown in Table 5) as the baseline.

Precision-wise, our results are consistent with those reported earlier in [30, 25, 14].
Specifically, E-2obj always preserves the precision of 2obj in theory, T-2obj preserves
the precision of #call-edges, #fail-cast, and #poly-calls but not #avg-pts in practice, and
finally, Z-2obj loses precision by design in general as it has caused #call-edges, #fail-cast,
#poly-calls and #avg-pts to increase by 3.6%, 1.6%, 0.4% and 8.7%, respectively.

Efficiency-wise, our results are also consistent with those reported earlier in [30, 25, 14]
in the sense that E-2obj, T-2obj, and Z-2obj are faster than 2obj. Specifically, Zipper
(the least precise) achieves the highest speedups, ranging from 1.2x (for bloat) to 10.3x
(for findbugs) with an average of 3.0x, Turner achieves slightly lower speedups, ranging
from 1.8x (for JPC) to 9.2x (for findbugs) with an average of 2.8x, and finally, Eagle
(the most precise) achieves the lowest speedups, ranging from 1.3x (for JPC) to 1.9x (for
checkstyle) with an average of 1.5x. However, the relative speedups of E-2obj, T-2obj,
and Z-2obj over 2obj reported here are not expected to be exactly the same as those
reported in [30, 14] due to different experimental settings used (for the purposes of validating
different design hypotheses). One difference is particularly noteworthy: E-2obj and Z-2obj
are compared by parameterizing E-kobj and Z-kobj as in Table 4 in [14], but E-kobj as
[Eq. (3), Eq. (10), Eq. (11)] and Z-kobj as [Eq. (3), Eq. (9), Eq. (11)] instead in [14, 30].
Specifically, the objects that are instantiated from StringBuilder and StringBuffer as
well as Throwable (including its subtypes) are merged per dynamic type and then analyzed
context-insensitively in [14, 25] but not in [30]. This again highlights the significance for
the research community to share Qilin as a common open-source framework to design and
evaluate different fine-grained analyses in future work.

6 Related Work

We review the past work on context-sensitive pointer analyses for Java by focusing on
representative open-source frameworks developed and the recent research trend on exploring
fine-grained context-sensitivity, by placing Qilin again in its research context.

ECOOP 2022

30:24 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Pointer Analysis Frameworks. Existing frameworks, which were originally designed and
implemented to support method-level context-sensitivity, fall into three categories: (1)
imperative, e.g., Spark [23] and Wala [16] (implemented in Java), (2) declarative, e.g.,
Doop [8] (coded in Datalog on top of a Datalog engine, e.g., Soufflé [20, 39]), and (3) hybrid,
e.g., Jchord [34] and Paddle [24] (with the core of a pointer analysis algorithm performed
in Datalog declaratively but the rest coded in Java imperatively). In contrast, Qilin is a
new framework designed to support variable-level context-sensitivity (by subsuming existing
traditional frameworks as a special case since all the variables/objects in a method can only
be analyzed traditionally by using exactly the same context abstraction).

In the past decade or so, Doop has been the state of the art for supporting traditional
pointer analyses with method-level context-sensitivity. As a fully-declarative framework,
Doop is highly scalable, enabling complex and precise context-sensitive pointer analyses to
be developed efficiently in the past [8, 42]. Whether an imperative alternative can outperform
Doop in terms of efficiency while achieving the same precision remains to be unknown
for years in the pointer analysis community. In this paper, we show that Qilin, as an
imperative framework, can outperform Doop substantially while also allowing all traditional
pointer analyses to be specified precisely and modularly as in Doop.

Fine-Grained Context-Selectivity. To scale context-sensitive analyses further for large
codebases, how to explore a significantly larger space of efficiency/precision tradeoffs by
moving from method-level to fine-grained context-sensitivity has received increasing interest.
In the past few years, method-level context-sensitivity has been made (1) selective (by
analyzing only a subset of methods context-sensitively via exploiting user-supplied hints
[43], machine learning [19], and pattern-matching [25], and (2) selective (by analyzing only a
subset of variable/objects context-sensitively via exploiting CFL (Context-Free Language)
reachability [28, 30, 14, 29]. In the near future, we envisage to see more pointer analyses
with variable-level context-sensitivity to be developed.

However, existing pointer analysis frameworks [23, 16, 8, 34, 24] were all designed for
supporting method-level context-sensitivity. As described in Section 1, we have made
significant efforts in extending Doop to support fine-grained context-sensitivity, but to no
avail. We see two limitations from our preliminary investigation: First, the number of rules
for supporting fine-grained analyses increases drastically relative to the Doop baseline since
a fine-grained analysis relies on more configurable parameters (in addition to the context
length k). Second, the performance of the extended Doop version is rather disappointing
due to possibly poor join orders selected by its underlying Datalog engine [39, 20] used.

In this paper, we have designed and implemented Qilin on top of Spark [23] for
supporting fine-grained context-sensitivity. In our previous work [28, 30, 14, 29], we have also
introduced a few in-house implementations (which can be seen as some precursors of Qilin)
for supporting only partial context-sensitivity (under which variables/objects and methods
can be analyzed either context-sensitively or context-insensitively). These implementations
are designed to support specific pointer analysis techniques with different design choices
and settings for handling different language features, which limit them from being used
as a general-purpose framework. To the best of our knowledge, Qilin represents the first
framework that supports all such fine-grained analyses precisely, efficiently and modularly.

Iterative Constraint Solving via Difference Propagation. Many program analyses, such as
pointer analysis, exploit the idea of difference propagation [12, 35, 23] when resolving their
constraints towards a fixed-point solution efficiently. For example, Sridharan et al. [45] present

D. He, J. Lu, and J. Xue 30:25

a difference-propagation-based pointer analysis algorithm for object-oriented programs. In
their algorithm, every time when an edge x

assign
−−−−→ y needs to be handled, their algorithm

needs to compute δ = PTS(x) − PTS(y) and then propagates δ to PTS(y), which can be
highly expensive. In contrast, Qilin’s incremental worklist-based algorithm (Algorithm 1),
which is is extended from Spark [23], computes only δnew = PTS(x)new − PTS(y)new and
then propagates δnew to PTS(y)new. As a result, our constraint solver is more efficient. In
addition, the semi-naïve evaluation, an efficient evaluation strategy used by many existing
Datalog engines [20, 31], refines the naïve (chaotic iteration) strategy to avoid redundant
work by exploiting also the idea of difference propagation. The speedups achieved by Qilin
over Doop are attributed to our incremental worklist algorithm, which may exhibit better
join orders than the ones automatically selected by Doop’s underlying Datalog engine [20].

7 Conclusion and Future work

We have introduced Qilin as the first open-source framework (to be released soon) for
supporting fine-grained context-sensitive pointer analyses (including the traditional ones as
special cases) for Java, precisely, efficiently and modularly. Developing such a production-
quality framework involves a lot of technical and engineering efforts. We will maintain and
grow this open-source project actively on GitHub to support further research on pointer
analysis and a variety of other static analyses for Java (and possibly other object-oriented
programming languages). Several immediate future research/engineering activities that can
be carried out in Qilin include (1) parallelizing its constraint solver to lift its performance
further, (2) covering more native methods and Java reflection APIs, (3) supporting more Java
features in JDK8 and above, and (4) experimenting with the design and implementation of
novel variable-level context-sensitive pointer analysis algorithms. Finally, as an open-source
project, Qilin is also expected to be driven by community contribution.

References
1 Karim Ali and Ondřej Lhoták. Application-only call graph construction. In ECOOP 2012

– Object-Oriented Programming, pages 688–712, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

2 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD
thesis, University of Cophenhagen, 1994.

3 Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. Porting Doop to Soufflé:
A tale of inter-engine portability for datalog-based analyses. In Proceedings of the 6th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis, pages 25–30, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3088515.3088522.

4 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 259–269, New York, NY, USA, 2014. Association for Computing Machinery.

5 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.

ECOOP 2022

https://doi.org/10.1145/3088515.3088522

30:26 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

6 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE.

7 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis: Better
together. In Proceedings of the 18th International Symposium on Software Testing and Analysis,
pages 1–12, New York, NY, USA, 2009. Association for Computing Machinery.

8 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery.

9 Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer analysis for speculative optim-
izations. In Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 416–425, New York, NY, USA, 2006.
Association for Computing Machinery. doi:10.1145/1168857.1168908.

10 Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang. SMOKE:
Scalable path-sensitive memory leak detection for millions of lines of code. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 72–82, New York, NY,
USA, 2019. IEEE. doi:10.1109/ICSE.2019.00025.

11 Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. Boosting the precision of virtual call
integrity protection with partial pointer analysis for C++. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 329–340, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3092703.3092729.

12 Christian Fecht and Helmut Seidl. Propagating differences: An efficient new fixpoint algorithm
for distributive constraint systems. In European Symposium on Programming, pages 90–104.
Springer, 1998.

13 Neville Grech and Yannis Smaragdakis. P/Taint: Unified points-to and taint analysis.
Proceedings of the ACM on Programming Languages, 1(OOPSLA), October 2017. doi:
10.1145/3133926.

14 Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. Accelerating object-sensitive pointer
analysis by exploiting object containment and reachability. In Proceedings of the 35th European
Conference on Object-Oriented Programming (ECOOP 2021), pages 18:1–18:31, Dagstuhl,
Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 Dongjie He, Jingbo Lu, and Jingling Xue. Context debloating for object-sensitive pointer ana-
lysis. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 79–91. IEEE, 2021.

16 IBM. WALA: T.J. Watson Libraries for Analysis, 2020. URL: http://wala.sourceforge.
net/.

17 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018.

18 Minseok Jeon, Myungho Lee, and Hakjoo Oh. Learning graph-based heuristics for pointer
analysis without handcrafting application-specific features. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–30, 2020.

19 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017.

20 Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of program
analyzers. In Computer Aided Verification, pages 422–430, Cham, 2016. Springer International
Publishing.

https://doi.org/10.1145/1168857.1168908
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3133926
http://wala.sourceforge.net/
http://wala.sourceforge.net/

D. He, J. Lu, and J. Xue 30:27

21 Timotej Kapus and Cristian Cadar. A segmented memory model for symbolic execution. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 774–784, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3338906.3338936.

22 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 423–434, New York, NY, USA, 2013. Association for Computing
Machinery.

23 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

24 Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Trans. Softw. Eng. Methodol., 18(1), October
2008. doi:10.1145/1391984.1391987.

25 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018.

26 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-first pointer analysis
with self-tuning context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 129–140, New York, NY, USA, 2018. Association for Computing Machinery.

27 Bozhen Liu and Jeff Huang. D4: Fast concurrency debugging with parallel differential analysis.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 359–373, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3192366.3192390.

28 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 30(4):1–46, 2021.

29 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with
CFL-reachability. In International Static Analysis Symposium, pages 261–285. Springer, 2021.

30 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019.

31 Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From Datalog to flix: A declarative
language for fixed points on lattices. ACM SIGPLAN Notices, 51(6):194–208, 2016.

32 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 1–11, New York, NY, USA,
2002. Association for Computing Machinery.

33 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005.

34 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery.

35 David J Pearce, Paul HJ Kelly, and Chris Hankin. Online cycle detection and difference
propagation for pointer analysis. In Proceedings Third IEEE International Workshop on Source
Code Analysis and Manipulation, pages 3–12. IEEE, 2003.

36 Zoltán Porkoláb, Tibor Brunner, Dániel Krupp, and Márton Csordás. Codecompass: An open
software comprehension framework for industrial usage. In Proceedings of the 26th Conference
on Program Comprehension, pages 361–369, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3196321.3197546.

ECOOP 2022

https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/3192366.3192390
https://doi.org/10.1145/3196321.3197546

30:28 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

37 Jyoti Prakash, Abhishek Tiwari, and Christian Hammer. Effects of program representation
on pointer analyses – an empirical study. Fundamental Approaches to Software Engineering,
12649:240, 2021.

38 Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini. Call graph
construction for Java libraries. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 474–486, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2950290.2950312.

39 Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast large-scale
program analysis in Datalog. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, pages 196–206, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2892208.2892226.

40 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 7, pages 189–234. Prentice-Hall, 1981.

41 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Citeseer, 1991.
42 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:

understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery.

43 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery.

44 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow-and context-sensitive pointer analysis for Java. In 30th European Conference on
Object-Oriented Programming, pages 22:1–22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

45 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pages 196–232. Springer, Berlin, Heidelberg, 2013.

46 Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
112–122, New York, NY, USA, 2007. Association for Computing Machinery.

47 Yulei Sui, Yue Li, and Jingling Xue. Query-directed adaptive heap cloning for optimizing
compilers. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 1–11, New York, NY, USA, 2013. IEEE. doi:10.1109/CGO.
2013.6494978.

48 T. Tan, Y. Li and J. Xue. Efficient and precise points-to analysis: modeling the heap by
merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery.

49 Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive pointer analysis more precise
with still k-limiting. In International Static Analysis Symposium, pages 489–510, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

50 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 263–277, New York, NY, USA, 2017. Association for Computing Machinery.

51 David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. Past-sensitive pointer
analysis for symbolic execution. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 197–208, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3368089.3409698.

https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1145/3368089.3409698
https://doi.org/10.1145/3368089.3409698

D. He, J. Lu, and J. Xue 30:29

52 David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. Chopped symbolic
execution. In Proceedings of the 40th International Conference on Software Engineering,
pages 350–360, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3180155.3180251.

53 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010.

54 Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

55 Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free vulnerabilities. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 327–337,
New York, NY, USA, 2018. IEEE. doi:10.1145/3180155.3180178.

ECOOP 2022

https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180178

	1 Introduction
	2 Background and Motivation
	2.1 Method-Level Context-Sensitivity
	2.2 Variable-Level Context-Sensitivity
	2.3 Example

	3 Designing the Qilin Framework
	3.1 Parameterized Context-Sensitivity
	3.2 Parameterized Pointer Analysis
	3.3 A High-Performance Incremental Worklist-based Solver
	3.4 Handling Complex Language Features

	4 Using the Qilin Framework
	4.1 Context Constructors
	4.2 Context Selectors
	4.3 Heap Abstractors
	4.4 Qilin's Toolbox

	5 Evaluation
	5.1 RQ1: Precision
	5.2 RQ2: Efficiency
	5.3 RQ3: Modularity
	5.4 RQ4: Fine-Grained Context-Sensitivity

	6 Related Work
	7 Conclusion and Future work

